Mo  $K\alpha$  radiation

 $0.20 \times 0.19 \times 0.16$  mm

10118 measured reflections 4958 independent reflections

4559 reflections with  $I > 2\sigma(I)$ 

 $\mu = 17.37 \text{ mm}^{-1}$ 

T = 100 (2) K

 $R_{\rm int} = 0.018$ 

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## A second polymorph of *catena*poly[[aquadioxidouranium(VI)]bis( $\mu$ methanesulfonato- $\kappa^2 O:O'$ )]

# Grigory B. Andreev,\* Nina A. Budantseva, Ivan G. Tananaev and Boris F. Myasoedov

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Science, 31 Leninskiy pr., Moscow, 119991, Russian Federation Correspondence e-mail: grigory\_andreev@mail.ru

Received 11 November 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (S–C) = 0.003 Å; R factor = 0.022; wR factor = 0.054; data-to-parameter ratio = 36.7.

The monoclinic (space group  $P2_1/c$ ) title compound,  $[UO_2(CH_3O_3S)_2(H_2O)]_n$ , is a polymorphic modification of the known orthorhombic (space group *Pbcn*) variant of this stoichiometry [Wilson (1978). *Acta Cryst.* B**34**, 2302–2303]. The crystal structure consists of infinite  $[UO_2(CH_3SO_3)_2-(H_2O)]$  chains along the *a* axis. The coordination polyhedron of the U atom is a pentagonal bipyramid, whose equatorial plane consists of the O atoms of four methanesulfonate anions and one water molecule. The axial positions are occupied by O atoms of a nearly linear and symmetrical uranyl group. The methanesulfonate anions function as bidentate bridging ligands. The crystal structure involves intermolecular O–  $H \cdots O$  hydrogen bonds.

#### **Related literature**

In contrast to the title compound, the corresponding structure of the known orthorhombic polymorph contains infinite  $[(UO_2)(CH_3SO_3)_2(H_2O)]$  layers (Wilson, 1978).



#### Experimental

Crystal data  $[U(CH_3O_3S)_2O_2(H_2O)]$  $M_r = 478.23$ 

Monoclinic,  $P2_1/c$ *a* = 11.2613 (4) Å b = 7.9178 (3) Å c = 10.9061 (4) Å  $\beta = 99.261 (1)^{\circ}$   $V = 959.76 (6) \text{ Å}^{3}$ Z = 4

#### Data collection

| Bruker Kappa APEXII area-                  |
|--------------------------------------------|
| detector diffractometer                    |
| Absorption correction: numerical           |
| (APEX2; Bruker, 2006)                      |
| $T_{\rm min} = 0.039, T_{\rm max} = 0.062$ |

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.022 & \text{H atoms treated by a mixture of independent and constrained} \\ S &= 1.04 & \text{refinement} \\ 4958 \text{ reflections} & \Delta\rho_{\text{max}} &= 3.27 \text{ e } \text{\AA}^{-3} \\ 135 \text{ parameters} & \Delta\rho_{\text{min}} &= -3.39 \text{ e } \text{\AA}^{-3} \end{split}$$

#### Table 1

Selected geometric parameters (Å, °).

| U1 - 01                  | 1.7570 (19)<br>1.760 (2) | $U1-O4^{ii}$ | 2.3806 (19) |
|--------------------------|--------------------------|--------------|-------------|
| U1 - O6<br>$U1 - O8^{i}$ | 2.3772 (17)              | U1-09        | 2.4670 (19) |
| 01–03<br>01–U1–02        | 179.37 (9)               |              |             |

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z.

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|---------------------------|----------|-------------------------|--------------|------------------|
| O9−H8···O3 <sup>iii</sup> | 0.80 (4) | 1.94 (2)                | 2.717 (3)    | 164 (5)          |
| $O9-H7\cdots O7^{iv}$     | 0.80 (5) | 2.09 (4)                | 2.791 (3)    | 145 (7)          |

Symmetry codes: (iii) -x + 1, -y + 1, -z; (iv) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *APEX2*; software used to prepare material for publication: *SHELXL97*.

The X-ray structural research was conducted at the Department of the Structural Chemistry of Radioactive Elements of the Center of Physical Methods of Studies (Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2245).

#### References

Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wilson, A. S. (1978). Acta Cryst. B34, 2302-2303.

supplementary materials

Acta Cryst. (2007). E63, m3159 [doi:10.1107/S1600536807061016]

## A second polymorph of *catena*-poly[[aquadioxidouranium(VI)]bis( $\mu$ -methanesulfonato- $\kappa^2 O:O'$ )]

#### G. B. Andreev, N. A. Budantseva, I. G. Tananaev and B. F. Myasoedov

#### Comment

The structure of the title compound, (I), is shown in Fig. 1. The uranyl group is near linear and symmetrical. Coordination polyhedron of uranium atom is pentagonal bipyramide. Its equatorial plane is formed by oxygen atoms of one water molecule and four different methanesulfonate anions. The equatorial U—O distances are equal to 2.3772 (17)-2.3857 (15) and 2.4671 (18) Å for oxygen atoms of CH<sub>3</sub>SO<sub>3</sub> anions and water molecule, respectively. Methanesulfonate anions function as bidentate bridging ligands linking adjacent uranium coordination polyhedra into infinite chains parallel to [100] (Figs. 2 and 3). In contrast to the compound (I), the corresponding structure of the known orthorhombic polymorph (II) contains infinite [(UO<sub>2</sub>)(CH<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)] layers (Fig. 4; Wilson, 1978).

#### **Experimental**

The title compound (I) was obtained unintentionally as the product of an attempted synthesis of uranyl methanesulfonate with guanidinium cation in the outer sphere. 50 mg (0.175 mmol) of uranium oxide UO<sub>3</sub> was dissolved in 0.7 ml of 0.5 M methanesulfonic acid. Then 0.175 ml of 0.5 M solution of diguanidinium carbonte neutralized by 0.35 ml of 0.5 M methanesulfonic acid was added. The guanidinium:U molar ratio in the resulting mixture is 1:1. The single crystals were obtained after 2 days of isothermal (at ~22 °C) evaporation of the solution.

NIR/Vis and IR spectra were measured using Shimadzu UV3100 and Specord M80 spectrometers, respectively. The vibration frequencies of functional groups SO<sub>3</sub> and CS are slightly shifted to higher energies as compared to the free methanesulfonic acid. The stretching vibrations of  $UO_2^{2^+}$  group are observed in typical for uranyl compounds region. The vibration frequencies (cm<sup>-1</sup>) and their assignments: 3340, 3236*m* - v(HOH); 1236 s, 1138 s - v<sub>as</sub>(SO<sub>3</sub>); 3028w - v<sub>as</sub>(CH<sub>3</sub>); 1098 s, 1052 s - v<sub>s</sub>(SO<sub>3</sub>); 2944w - v<sub>s</sub>(CH<sub>3</sub>), 980vw -  $\rho$ (CH<sub>3</sub>); 1644*m*- d(H<sub>2</sub>O); 942*m*, 915s h - v (UO<sub>2</sub><sup>2+</sup>); 1422*m*- d(CH<sub>3</sub>); 790*m* - v(CS); 1332w- d<sub>s</sub>(CH<sub>3</sub>); 560*m*, 528w- d(SO<sub>3</sub>).

#### Refinement

H atoms of water molecule were located in a difference map and refined isotropically, with distance restraints of O–H = 0.82 (2) Å. Other H atoms were treated as riding atoms, with distances C–H = 0.98 (CH<sub>3</sub>), and with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The highest residual electron density peak and the deepest hole are located 0.67 and 0.45 Å, respectively, from atom U1.

Figures



Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms [symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z].



Fig. 2. Polyhedral representation of the infinite chains parallel to [100] in the structure of (I). H atoms have been omitted.



Fig. 3. The packing of infinite chain in the structure of (I), viewed down the a axis. H atoms have been omitted.



Fig. 4. Polyhedral representation of the infinite sheets in the structure of (II). H atoms have been omitted.

## catena-poly[[aquadioxidouranium(VI)]bis( $\mu$ -methanesulfonato- $\kappa^2 O:O'$ )]

| Crystal data                             |                                              |
|------------------------------------------|----------------------------------------------|
| $[U(CH_{3}O_{3}S_{1})_{2}O_{2}(H_{2}O)]$ | $F_{000} = 864$                              |
| $M_r = 478.23$                           | $D_{\rm x} = 3.310 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, $P2_1/c$                     | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                     | Cell parameters from 7994 reflections        |
| a = 11.2613 (4)  Å                       | $\theta = 2.4 - 42.7^{\circ}$                |
| b = 7.9178 (3) Å                         | $\mu = 17.37 \text{ mm}^{-1}$                |
| c = 10.9061 (4)  Å                       | T = 100 (2)  K                               |
| $\beta = 99.261 \ (1)^{\circ}$           | Prism, yellow                                |
| V = 959.76 (6) Å <sup>3</sup>            | $0.20\times0.19\times0.16~mm$                |
| Z = 4                                    |                                              |

#### Data collection

| Bruker Kappa APEXII area-detector diffractometer                | 4559 reflections with $I > 2\sigma(I)$ |
|-----------------------------------------------------------------|----------------------------------------|
| Monochromator: graphite                                         | $R_{\rm int} = 0.018$                  |
| T = 100(2)  K                                                   | $\theta_{\text{max}} = 37.5^{\circ}$   |
| $\phi$ and $\omega$ scans                                       | $\theta_{\min} = 3.2^{\circ}$          |
| Absorption correction: numerical ( <i>APEX2</i> ; Bruker, 2006) | $h = -19 \rightarrow 15$               |
| $T_{\min} = 0.039, T_{\max} = 0.062$                            | $k = -8 \rightarrow 13$                |
| 10118 measured reflections                                      | $l = -18 \rightarrow 18$               |
| 4958 independent reflections                                    |                                        |

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                            |
|----------------------------------------------------------------|---------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                        |
| $R[F^2 > 2\sigma(F^2)] = 0.022$                                | H atoms treated by a mixture of independent and constrained refinement          |
| $wR(F^2) = 0.054$                                              | $w = 1/[\sigma^2(F_o^2) + (0.029P)^2 + 1.1P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.04                                                | $(\Delta/\sigma)_{\text{max}} = 0.001$                                          |
| 4958 reflections                                               | $\Delta \rho_{max} = 3.27 \text{ e } \text{\AA}^{-3}$                           |
| 135 parameters                                                 | $\Delta \rho_{\rm min} = -3.39 \text{ e } \text{\AA}^{-3}$                      |
| 2 restraints                                                   | Extinction correction: none                                                     |
| Primary atom site location: structure-invariant direct methods |                                                                                 |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|    | x            | У             | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|----|--------------|---------------|--------------|---------------------------|
| U1 | 0.752778 (6) | 0.121075 (10) | 0.011327 (7) | 0.00498 (3)               |
| S2 | 0.94159 (4)  | -0.25209 (7)  | 0.04481 (5)  | 0.00625 (8)               |
| S1 | 0.43671 (4)  | 0.23068 (7)   | -0.10448 (5) | 0.00632 (8)               |

# supplementary materials

| O5 | 0.54270 (14) | 0.1816 (2)  | -0.01433 (17) | 0.0090 (3)  |
|----|--------------|-------------|---------------|-------------|
| O6 | 0.90791 (14) | -0.0786 (2) | 0.07588 (19)  | 0.0093 (3)  |
| O4 | 0.33894 (16) | 0.1091 (3)  | -0.1009 (2)   | 0.0164 (4)  |
| O7 | 0.86707 (16) | -0.3194 (3) | -0.06341 (19) | 0.0128 (3)  |
| O2 | 0.77899 (15) | 0.2103 (2)  | 0.16107 (19)  | 0.0118 (3)  |
| O3 | 0.39990 (17) | 0.4020 (2)  | -0.0874 (2)   | 0.0133 (3)  |
| 01 | 0.72636 (16) | 0.0298 (2)  | -0.13744 (18) | 0.0109 (3)  |
| 08 | 1.07021 (15) | -0.2558 (2) | 0.0337 (2)    | 0.0146 (4)  |
| C1 | 0.4747 (2)   | 0.2170 (3)  | -0.2535 (2)   | 0.0118 (4)  |
| H2 | 0.5419       | 0.2934      | -0.2597       | 0.014*      |
| H1 | 0.4052       | 0.2490      | -0.3151       | 0.014*      |
| Н3 | 0.4983       | 0.1008      | -0.2691       | 0.014*      |
| C2 | 0.9270 (2)   | -0.3769 (3) | 0.1739 (3)    | 0.0116 (4)  |
| H6 | 0.8598       | -0.3353     | 0.2123        | 0.014*      |
| H4 | 1.0015       | -0.3712     | 0.2342        | 0.014*      |
| Н5 | 0.9117       | -0.4942     | 0.1474        | 0.014*      |
| 09 | 0.70849 (15) | 0.4086 (2)  | -0.0706 (2)   | 0.0099 (3)  |
| H8 | 0.666 (3)    | 0.467 (5)   | -0.036 (4)    | 0.024 (11)* |
| H7 | 0.759 (4)    | 0.465 (7)   | -0.095 (6)    | 0.029 (12)* |

### Atomic displacement parameters $(\text{\AA}^2)$

|    | $U^{11}$     | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|----|--------------|-------------|-------------|---------------|--------------|--------------|
| U1 | 0.00484 (3)  | 0.00440 (4) | 0.00563 (4) | -0.00024 (2)  | 0.00061 (2)  | -0.00022 (2) |
| S2 | 0.00544 (16) | 0.0047 (2)  | 0.0088 (2)  | -0.00047 (15) | 0.00190 (15) | 0.00041 (16) |
| S1 | 0.00586 (17) | 0.0063 (2)  | 0.0068 (2)  | 0.00020 (15)  | 0.00102 (15) | 0.00188 (16) |
| O5 | 0.0060 (5)   | 0.0124 (8)  | 0.0081 (7)  | 0.0013 (5)    | 0.0001 (5)   | 0.0020 (6)   |
| O6 | 0.0087 (6)   | 0.0060 (7)  | 0.0127 (8)  | 0.0014 (5)    | 0.0006 (5)   | -0.0001 (6)  |
| O4 | 0.0082 (6)   | 0.0165 (9)  | 0.0232 (11) | -0.0041 (6)   | -0.0015 (6)  | 0.0119 (7)   |
| O7 | 0.0174 (7)   | 0.0103 (8)  | 0.0100 (8)  | -0.0035 (6)   | 0.0001 (6)   | -0.0004 (6)  |
| O2 | 0.0123 (7)   | 0.0127 (8)  | 0.0096 (8)  | 0.0020 (6)    | -0.0005 (6)  | -0.0022 (6)  |
| O3 | 0.0174 (8)   | 0.0102 (8)  | 0.0125 (9)  | 0.0057 (6)    | 0.0034 (6)   | -0.0011 (6)  |
| 01 | 0.0149 (7)   | 0.0083 (7)  | 0.0089 (8)  | 0.0010 (5)    | 0.0000 (6)   | -0.0010 (6)  |
| 08 | 0.0072 (6)   | 0.0082 (8)  | 0.0301 (12) | 0.0019 (5)    | 0.0083 (6)   | 0.0045 (7)   |
| C1 | 0.0153 (9)   | 0.0131 (10) | 0.0072 (9)  | 0.0020 (7)    | 0.0024 (7)   | 0.0001 (8)   |
| C2 | 0.0142 (9)   | 0.0096 (10) | 0.0110 (10) | 0.0004 (7)    | 0.0023 (7)   | 0.0030 (8)   |
| O9 | 0.0099 (6)   | 0.0059 (7)  | 0.0144 (9)  | 0.0000 (5)    | 0.0036 (6)   | 0.0006 (6)   |

### Geometric parameters (Å, °)

| U1—O1               | 1.7570 (19) | S1—O4 | 1.4677 (19) |
|---------------------|-------------|-------|-------------|
| U1—O2               | 1.760 (2)   | S1—O5 | 1.4712 (18) |
| U1—O6               | 2.3772 (17) | S1—C1 | 1.749 (3)   |
| U1                  | 2.3804 (17) | C1—H2 | 0.9800      |
| U1—O4 <sup>ii</sup> | 2.3806 (19) | C1—H1 | 0.9800      |
| U1—O5               | 2.3857 (15) | С1—Н3 | 0.9800      |
| U1—O9               | 2.4670 (19) | С2—Н6 | 0.9800      |
| S2—O7               | 1.436 (2)   | С2—Н4 | 0.9800      |

| S2—O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4733 (16)  | С2—Н5                  | 0.9800      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|-------------|
| S2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4789 (19)  | О9—Н8                  | 0.80 (4)    |
| S2—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.749 (3)    | О9—Н7                  | 0.80 (5)    |
| S1—O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.439 (2)    |                        |             |
| O1—U1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179.37 (9)   | O6—S2—C2               | 106.25 (12) |
| O1—U1—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.41 (8)    | O3—S1—O4               | 112.44 (12) |
| O2—U1—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89.23 (8)    | O3—S1—O5               | 112.45 (12) |
| O1—U1—O8 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.97 (8)    | O4—S1—O5               | 109.90 (11) |
| O2—U1—O8 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89.45 (8)    | O3—S1—C1               | 107.32 (13) |
| 06—U1—O8 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.06 (6)    | O4—S1—C1               | 106.30 (14) |
| 01—U1—O4 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92.52 (9)    | O5—S1—C1               | 108.12 (11) |
| O2—U1—O4 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86.88 (9)    | S1—O5—U1               | 144.49 (11) |
| 06—U1—O4 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73.50 (6)    | S2—O6—U1               | 138.87 (11) |
| O8 <sup>i</sup> —U1—O4 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 149.38 (6)   | S1—O4—U1 <sup>ii</sup> | 152.86 (13) |
| 01—U1—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.53 (7)    | S2—O8—U1 <sup>i</sup>  | 151.07 (12) |
| O2—U1—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.48 (7)    | S1—C1—H2               | 109.5       |
| O6—U1—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 146.71 (6)   | S1—C1—H1               | 109.5       |
| 08 <sup>i</sup> —U1—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 137.16 (6)   | H2—C1—H1               | 109.5       |
| O4 <sup>ii</sup> —U1—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73.41 (6)    | S1—C1—H3               | 109.5       |
| O1—U1—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.91 (8)    | H2—C1—H3               | 109.5       |
| O2—U1—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.67 (8)    | H1—C1—H3               | 109.5       |
| O6—U1—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 144.79 (6)   | S2—C2—H6               | 109.5       |
| O8 <sup>i</sup> —U1—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68.85 (6)    | S2—C2—H4               | 109.5       |
| O4 <sup>ii</sup> —U1—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 141.19 (6)   | Н6—С2—Н4               | 109.5       |
| O5—U1—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68.49 (6)    | S2—C2—H5               | 109.5       |
| O7—S2—O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112.15 (13)  | Н6—С2—Н5               | 109.5       |
| O7—S2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113.29 (11)  | H4—C2—H5               | 109.5       |
| O8—S2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.22 (10)  | U1—O9—H8               | 118 (3)     |
| O7—S2—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.49 (12)  | U1—O9—H7               | 121 (5)     |
| O8—S2—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106.03 (12)  | Н8—О9—Н7               | 110 (6)     |
| Symmetry codes: (i) $-x+2$ , $-y$ , $-z$ ; (ii) $-x+2$ , $-z$ ; (ii | x+1, -y, -z. |                        |             |

*Hydrogen-bond geometry (Å, °)* 

| D—H···A                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|--------------------------|-------------|--------------|--------------|------------|
| O9—H8…O3 <sup>iii</sup>  | 0.80 (4)    | 1.94 (2)     | 2.717 (3)    | 164 (5)    |
| O9—H7···O7 <sup>iv</sup> | 0.80 (5)    | 2.09 (4)     | 2.791 (3)    | 145 (7)    |
|                          |             |              |              |            |

Symmetry codes: (iii) –*x*+1, –*y*+1, –*z*; (iv) *x*, *y*+1, *z*.

Fig. 1





Fig. 2







Fig. 4